چکیده:
این مقاله یک مدل برای پاسخگویی بار (DR) توسط استفاده از مدلسازی رفتار مشتری با در نظر گرفتن سناریوهای مختلف و سطوح عقلانیت مختلف را توسعه می دهد. مدلسازی رفتار مشتریان از طریق توسعه ماتریس های الاستیسیته قیمت تقاضا وسیع برای انواع مختلف مشتری ها انجام شده است. از این ماتریس های الاستیسیته قیمت (PEMs) برای محاسبه میزان پاسخگویی بار برای یک مشتری داده شده با توجه به سناریوی قیمت گزاری زمان واقعی روز قبل، استفاده شده است. مدل های DR به فیدر آزمایشی ۸۵۰۰ گرهه IEEE که یک شبکه توزیع شعاعی واقعی بزرگ جهانی است، اعمال شده است. یک تحلیل جامع در مورد اثرات کاهش تقاضا و توزیع مجدد بر ولتاژها و جریان های سیستم انجام شده است. نتایج نشان می دهد که DR قابل توجه می تواند ولتاژ سیستم را برای قطع بار بیشتر از طریق تکنیک های مدیریت طرف تقاضا مثل کنترل (VVC) تقویت کند.
پروژه کارشناسی ارشد برق
فایل محتوای:
چکیده
اخیرا نصب ژنراتورهای کوچک در شبکه های توزیع، به علت مزیت های متعددی که دارند، افزایش یافته است. یکی از مسائل مهم مربوط به این ژنراتورهای توزیع شده، تاثیر خطاهای سیستم بر پایداری گذرای آنها است. به علت ثابت اینرسی کم ژنراتورهای مقیاس کوچک و عملکرد آهسته رله های حفاظتی شبکه های توزیع، ایجاد ناپایداری گذرا برای این ژنراتورها کاملا محتمل است. در این مقاله، رفتار دینامیک ژنراتورهای سنکرون مقیاس کوچک در برابر خطاهای سیستم و حساسیت آن ها به پارامترهای سیستم مورد بررسی قرار می گیرند. سپس یک روش حفاظتی عملی با استفاده از اضافه جریان موجود و رله های کمبود ولتاژ پیشنهاد می شود و به مزیت ها و معایب آن اشاره می شود. در ادامه، بر اساس اطلاعات به دست آمده از تحلیل حساسیت، یک رله حفاظتی جدید برای حفاظت ژنراتورها در برابر ناپایداری پیشنهاد می شود. رله پیشنهادی از یک ژنراتور قدرت فعال برای تعیین زمان مناسب برای قطع کردن ژنراتور استفاده می کند. نتایج شبیه سازی عملکرد مطمئن و مقاومت رله پیشنهادی در برابر ناپایداری های گذرای سیستم تایید می کنند. علاوه براین، الگوریتم پیشنهادی با ژنراتورهایی با قابلیت کار کردن با شبکه های سراسری خطا دار، هم سازگار است.
اصطلاحات شاخص: سیستم حفاظتی تولید پراکنده (DG) ؛ تولید پراکنده؛ قابلیت کار کردن با شبکه های سراسری خطا دار (FRT) ؛ پایداری گذرا
مقدمه
تولید پراکنده (DG) به عنوان یک منبع توان الکتریکی که مستقیما به شبکه توزیع یک سیستم قدرت متصل می شود، تعریف می شود [1]. این روزها نصب DG ها در سیستم های قدرت به دلیل مزایایی که دارند، از جمله کاهش افت، پیک سایی، خدمات کمکی، کیفیت توان بالاتر، زمان ساخت کوتاه تر شان، احتمال افت بار کمتر و هم چنین تعویق انتقال، جایگزینی توزیع، مسائل مقررات زدایی و نگرانی های زیست محیطی، رو به افزایش است [2]- [5]. با این حال، اتصال داخلی DG ها برخی تغییرات را به سیستم های توزیع موجود تحمیل می کند و می تواند در سیستم های قدرت ناپایداری ایجاد کند و حتی منجر به قطع برق شود [6], [7]. وقتی DG بطور موازی با سیستم شبکه برق کار کند، رویه حفاظتی سیستم های توزیع سنتی را بهبود می دهد. رله کردن مناسب و تنظیم DG می توانند مهم ترین لوازم تعیین کننده برای جلوگیری از ناپایداری ژنراتور باشند.
خلاصه
بازده انرژی برای بازارهای برق امروزی بسیار مهم می باشد. توجه به راندمان، پایداری و مسئولیت های اجتماعی شرکت به عنوان امر کلیدی در ارتباط با تاسیسات جهانی به شمار می آید. این مقاله خلاصه ای از روش های مراکز تولید برق ایتالیا را در ارتباط با بازده انرژی با کاربرد نهایی به منظور کاهش مصرف برق از طریق اقداماتی که به مشتریان نهایی می گردد، توضیح می دهد.
از سال 2004، اهداف مربوط به صرفه جویی انرژی سالانه توسط قانون گذاران ایتالیایی توسط موسسات صرفه جویی در انرژی (ESCOs) ، گواهینامه صرفه جوی انرژی و پیاده سازی مکانیسم تجاری معتبر مطرح شد.
شرکت انل، به دلیل اهمیت و تعهد شرایط بازاری و توسعه پایدار، نقش راهبردی را را برای دستیابی به اهداف داخلی و ترویج استفاده منطقی از انرژی ایفا می کند.
اهداف بازدهی انرژی در کشور ایتالیا
بازده انرژی کاربردی در بسیاری از کشورهای اتحادیه اروپا و در سطح جهان مورد توجه بوده است. آن راهی را در ارتباط با پیشرفت جوامع توسعه یافته پیش رو می گذارد. بسیاری از قانون گذاران از پروژه بازده انرژی کاربردی حمایت کرده اند.
سیستم بازده انرژی در ایتالیا بر مبنای بخش نامه های سیاسی می باشد.
- اجرای پروتکل کیوتو: کشور ایتالیا متحد شده است تا آلاینده های خود را تا 6.5 درصد بین سال های 1990 و 2008-2012 برساند.
- نیاز باری تطبیق با بخش نامه های اروپایی، در ارتباط با آزادی بازار برق و گاز بنا به حکم در مارس 1999 و حکم در می 2000 که امتیازی را برای شرکت های پخش ایجاد کرده است شامل فعالیت هایی می باشد که باعث افزایش بازده انرژی و کاربرد نهایی آن بر طبق به اهداف کمیتی که توسط وزیر صنایع و وزیر محیط زیست بیان شده است می شود.
در ابتدای صنعت برق نیروگاههای کوچک دیزلی و سوختی پاسخگوی مصرف کنندگان بود، اما در حال حاضر دیگر به علت استفاده روزافزون از صنعت برق و رشد مصرف رفته رفته نیروگاههای دیزلی جای خود را به نیروگاههای بخار (سیکل ترکیبی) و آبی و انرژی هسته ای و غیره می دهند تا جائیکه امروزه تلاش براین است به جهت رعایت مسائل زیست محیطی و پاکیزگی حوزه های کاری استفاده بیشتر از انرژی هسته ای، از انرژی گرمایی زمین هم برای تولید انرژی الکتریکی استفاده شود. انرژی تولید شده که در بحث برق به صورت ولتاژ مطرح می شود، بسیار پایین است و برای انتقال این انرژی با تلفات کمتر لازم است این ولتاژ افزایش یابد. ولتاژ تولیدی نیروگاهها معمولا ۶/۶kv تا ۳۰kv می باشد. این ولتاژ در پستهای نیروگاهی به ولتاژهای انتقال (۶۳، ۱۳۲، ۲۳۰ و یا ۴۰۰ کیلو ولت) تبدیل می شود. بعد از انتقال برای مصرف بایستی این ولتاژها به مقدار ۲۰kv و ۴۰۰v کاهش یافته که این عمل توسط ترانسهای کاهنده انجام می گیرد. لذا به منظور تامین انرژی مورد نیاز مصرف کننده ها شبکه توزیع فشار متوسط و ضعیف در بخشهای مختلف صنعتی، کشاورزی، مسکونی و عمومی (تجاری) دارای شرایط و خصوصیات معینی می باشد.
مقدمه
طراحی ترانسفورماتور یعنی آماده سازی نقشه های اجرایی ترانسفورماتور اولین گام در ساخت آن است.
برای شروع کار محاسبه و طراحی حداقل مشخصات زیر باید ارائه شود:
-قدرت نامی ترانسفورماتور
-ولتاژهای فشار قوی و ضعیف و گروه برداری
-امپدانس اتصال کوتاه، تلفات بی باری و بارداری
-ارتفاع، دما، درصد رطوبت نسبی و آلودگی محیط نصب
-استانداردها
در بعضی مواقع پاره ای مشخصات ویژه نیز اعمال می نمایند به عنوان مثال محدودیت در چگالی شار یا چگالی جریان و یا محدودیت در ابعاد فیزیکی ترانسفورماتور. پس از دریافت اطلاعت و بر اساس مدارک موجود قسمت فعال ترانسفورماتور شامل سیم پیچیها، هسته و مواد عایقی محاسبه می وند.
مدارک و استانداردهای مورد استفاده دیگر عبارتند از VDE و DIN و IEC.
ترانسفورماتور طراحی شده را می توان به دو گروه نرمال و ویژه تقسیم کرد:
-منظور از ترانسفورماتور نرمال ترانسفورماتور هایی می باشند که به طور گسترده در شبکه توزیع مصرف دارند و بدین جهت به طور گسترده تولید می شوند. ترانسفورماتورهای 200kVA و 100 50 و 25، گروه برداری Yzn5 و نسبت ولتاژی 20kV 4%/0.4kV
-ترانسهای ویژه دارای شرایط خاصی هستند که توسط مشتری ارائه می شوند و تولیدی محدود دارند.
ترانسفورماتور های توزیع عموماً دارای سیستم خنک کنندگی ONAN و Tap changer به صورت Off Load می باشند که برای ردیف 20 کیلوولت، سه پله و برای ردیف 30 کیلو ولت، پنج پله می باشند.
1-2-طراحی
طراحی ترانسفورماتور یعنی اجرای محاسبات مکانیکی جهت دفع حرارت ناشی از تلفات و هم چنین آماده سازی نقشه های مکانیکی ترانسفورماتور. مراحل مختلف این کار عبارتند از:
-طراحی هسته
-طراحی ابعاد برد شامل انتخاب نبشی ها یا تسمه های مناسب
-طراحی ساختمان جمعی سیم پیچیها
-سیم بندیهای فشار قوی و فشار ضعیف (در فشار ضعیف انتخاب شینه های انعطاف پذیر در توانهای بالا، خمکاری تسمه های خروجی از بوبین جهت تعیین ارتفاع، مهار تسمه ها با استفاده از بستهای چوبی، تعیین حداقل فاصله تا مرکز بوشینگها و در فشار قوی با توجه به گروه برداری تعیین قطر و طول سیمهای اتصال دهنده فازها جهت ایجاد گروه برداری مناسب، انتخاب کلید تنظیم ولتاژ)
-طراحی در پوش با توجه به ابعاد و سوراخکاری برد
-طراحی مخزن شامل محاسبات مکانیکی جهت محاسبه تعداد، عمق، گام و ارتفاع و رله ها