خلاصه
چکیده: در این مقاله روش آموزش نظارت جدید برای ارزیابی چگونگی شبکه های Feed Forward عصبی تک لایه ارائه می شود. این روش از تابع هدفی بر مبنایMSE استفاده می کند، که خطاها را به جای این که پس از تابع فعالسازی غیرخطی نورون ها ارزیابی کند قبل از آن ها بررسی می کند. در این گونه موارد، راه حل را می توان به سهولت از طریق حل معادلات در سیستم های خطی به دست آورد یعنی در این روش نسبت به روش های معین و مرسوم پیشین به محاسبات کمتری نیاز است. تحقیقات تئوری شامل اثبات موازنه های تقریبی بین بهینه ستزی سراسری تابع هدف بر مبنای معیارMSE و یک تابع پیشنهادی دیگر می باشد. بعلاوه مشخص شده است که این روش قابلیت توسعه و توزیع آموزش را دارا می باشد. طی تحقیقات تجربی جامع نیز تنوع صحت در انرمان این روش مشخص شده است. این تحقیق شامل 10 دسته بندی و 16 مسئلۀ بازگشتی می باشد. بعلاوه، مقایسه این روش با دیگر الگوریتم های آموزشی با عملکرد بالا نشان می دهد که روش مذکور بطور متوسط بیشترین قابلیت اجرایی را داشته و به حداقل محاسبات در این روش نیاز می باشد.
1.« مقدمه »:
برای بررسی شبکه عصبیFeed Forward تک لایه با تابع فعالسازی خطی، مقادیر وزن برای تابع بهMSE حداقل رسیده و می توان این مقادیر را به وسیله یک ماتریس شبه معکوس بدست آورد [1,2]. بعلاوه، می توان اثبات کرد که سطح MSE این شبکه خطی تابعی درجه دوم می باشد [3]. بنابراین این سطحمحدب هایپر پارابولیک (فراسهمی وار) را می توان به سادگی با روش گرادیان نزولی (Gradient descent) طی کرد. با این حال، اگر ازتابع فعالسازی غیر خطی استفاده شود، مینیمم های محلی می توانند بر مبنای معیارMSE در تابع هدف دیده شوند [4-6]. طی تحقیقات مختلف می توان مشاهده نمود که تعداد چنین مینیمم هایی می توانند با ابعاد ورودی به صورت نمایی توسعه پیدا کند. تنها در برخی موارد خاص می توان تضمین کرد که شرایط حاکم، فاقدMin های محلی هستند. در مورد الگوهای تفکیک پذیرخطی و معیار آستانه MSE، وجود حداقل یک مقدارMin در تابع هدف به اثبات رسیده است [8,9]. با این حال، این امر یک موقعیت عمومی نمی باشد.
چکیده
به عنوان یک طرح کارآمد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بی شمار و حوزه های کاربردی، طرح شناخت فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs (طرح شناخت فازی) سنتی، روش کارامدی را برای تعیین وضعیت سیستم مورد بررسی و تعیین علت و معلول که مبنای واقعی نظریه FCMs (طرح شناخت فازی) می باشد، ایجاد نمی کند. بنابراین در بسیاری از موارد، ایجاد FCMs (طرح شناخت فازی) برای سیستم های علت و معلول یچیده بستگی به دانش متخصصان دارد. مدل های ایجاد شده فیزیکی، دارای کمبودهایی مهمی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی قابل اطمینان دارند. در این مقاله به طرح شبکه عصبی فازی برای بالا بردن توان یادگیری FCMs (طرح شناخت فازی) پرداخته به گونه ای که تعیین خودکار توابع عضویت و تعیین علت و معلول آن با مکانیسم استنتاج FCMs (طرح شناخت فازی) رایج ادغام می گردد. به این ترتیب، مدل FCMs (طرح شناخت فازی) سیستم های مورد بررسی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از یافته های متخصصان می باشند. علاوه بر این، لز زیرمجموعه های متقابل برای تعریف و شرح علت و معلول در FCMs (طرح شناخت فازی) استفاده می کنیم. این موارد تفاسیر مشخصی را در ارتباط با دلایل FCMs (طرح شناخت فازی) ایجاد کرده و به این ترتیب درک فرایند استنتاج را اسان تر می کند. برای تایید عملکرد، روش پیشنهادی در سری زمانی پر هرج و مرج پیش بینی شده، تست می گردد. بررسی های شبیه سازی شده کارایی روش پیشنهادی را نشان می دهد.
مقدمه
از زمان تحقیقات کوشو، طرح شناختی فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به عنوان یک روش بررسی مدل ها، برای سیستم های پیچیده، مدل FCMs به بررسی سیستم های دیگر به عنوان مجموعه ای از مفاهیم و روابط بین این مفاهیم که منشاء آن از ترکیب منطق فازی و شبکه های عصبی می باشد پرداخته است. ذاتا، FCMs به عنوان یک نمودار مستقیم همراه با بازخوردهایی می باشد که شامل مجموعه ای از گره ها و منحنی هایی می باشد که این گره ها را به هم مرتبط می کند. شکل 1 نمایش گرافیکی FCM و ساختار شبکه ای آن را نشان می دهد.
چکیده
یک وسیله دقیق و محاسباتی کارآمد برای دسته بندی الگوی سیگنال های الکترومیوگرافی، موضوع بحث بسیاری از پژوهشگران در سال های اخیر بوده است. تجزیه تحلیل های کمیتی سیگنال های EMG، منبع اطلاعاتی مهمی برای تشخیص اختلالات عصبی-عضلانی می باشد. با پیگیری توسعه های اخیر تجهیزات EMG کامپیوتری، روش های مختلفی در حوزه زمان و حوزه فرکانس برای تحلیل های کمیتی، انجام گرفته است. در این بررسی، دسته بندی کننده های مبنی بر شبکه های عصبی مصنوعی پس-انتشار خطای پیشخور (FEBANN) و شبکه های عصبی موجک (WNN) در دقت در دسته بندی سیگنال های EMG با هم مقایسه شده اند. در این روش ها، ما از یک مدل خودبازگشت (اتورگرسیو) (AR) سیگنال های EMG، به عنوان ورودی سیستم دسته بندی، استفاده کردیم. مقدار کل 1200 MUP که از 7 مورد طبیعی، 7 مورد دارای بیماری میوپاتی، و 13 مورد دارای بیماری های با ریشه عصبی به دست آمدند، آنالیز شده اند. میزان موفقیت برای روش WNN 90.7% و برای روش FEBANN 88% بوده است. مقایسه بین دسته بندی کننده های توسعه یافته، نخست بر مبنای تعدادی اندازه گیری های عددی مربوط به دسته بندی می باشد. دسته بندی کننده مبنی بر WNN، بر همتای FEBANN خود برتری دارد. دسته بندی WNN ارایه شده، می تواند تصمیم گیری های کارشناسانه را پشتیبانی کرده و به تشخیص افتراقی EMG کمک کند.
کلیدواژه: الکترومیوگرافی، پتانسیل واحد موتور، روش اتورگرسیو، شبکه عصبی موجک
مقدمه
بیش از 100 اختلال عصبی و ماهیچه ای وجود دارد که بر روی نخاع، عصب، و ماهیچه اثر می گذارد. تشخیص بموقع این بیماری ها توسط معاینه های درمانگاهی و تست های آزمایشگاهی، برای مدیریتکردن آنها و نیز پیشبینی آنها با استفاده از تشخیص پیش از تولد و مشاوره های ژنتیکی، حیاتی می باشد. این اطلاعات همچنین در ازوهش موجود می باشد، که می تواند منجر به فهم طبیعت این بیماری ها، و سرانجام بیماری آنها گردد. مورفولوژی (ریخت شناسی) واحد موتور، را می توان با ثبت فعالیت های الکتریکی معروف به الکترومیوگرافی (EMG) بررسی کرد. در EMG درمانگاهی، پتانسیل های واحد موتور (MUP) با استفاده از یک الکترود سوزنی در اقباض ارادی کم، ثبت می شود.