چکیده
پیشبینی دقیق قدمت برق، چالشی بزرگ برای شرکت کنندگان و مدیران بازار می باشد، زیرا قیمت الکتریسیته دارای نوسانات بسیاری است. پیشبینی قیمت نیز، مهم ترین هدف مدیریتی برای مشارکت کنندگان در بازار است، چرا که مبانی بیشینه کردن سود را، تشکیل می دهد. این مطالعه، عملکرد یک تکنیک شبکه عصبی جدید را بنام ناشین یادگیری سریع (ELM) ، در مساله پیشبینی قیمت، بررسی می کند. با در نظر داشتن خط مربوط به بازهای برق که دارای نوسانات بسیاری در قیمت هستند، تکیه به یک تکنیک، خیلی هم سودمند نمی باشد. بنابراین، ELM با تکنیک موجک همراه شده است و یک مدل پیوندی (مرکب) را به نام WELM (ELM مبتنی بر موجک) را تشکیل داده است تا دقت پیشبینی و نیز قابلیت اطمینان آن را، بهبود بخشد. در این روش، ویژگی های بی همتای هر ابزار، تکریب شده اند تا الگوهای مختلفی را در اطلاعات، بدست آورند. قدرت این تکنیک، با استفاده از روش مجموع شده، بهبود بیشتری می یابد. عملکردهای مدل های ارایه شده، با استفاده از اطلاعات موجود در بازارهای برق انتاریو، PJM، نیویورک و ایتالیا، ارزیابی شده اند. نتایج آزمایشی نشان می دهند که روش پیشنهادی، یکی از مناسب ترین تکنیک های پیشبینی قیمت می باشد.
کلیدواژه ها: شبکه عصبی مصنوعی (ANN) ، تجدید ساختار، روش مجموع، ماشین یادگیری سریع (ELM) ، پیشبینی قیمت، تبدیل موجک
پروژه کارشناسی ارشد برق
فایل محتوای
اصل مقاله لاتین 10 صفحه
متن ورد ترجمه شده بصورت کاملا تخصصی 26 صفحه
خلاصه
به عنوان یک طرح کارامد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بیشمار و حوزه های کاربردی، طرح شناخت فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs (طرح شناخت فازی) سنتی، روش کارامدی را برای تعیین وضعیت سیستم مورد بررسی و تعیین علت و معلول که مبنای واقعی نظریه FCMs (طرح شناخت فازی) می باشد، ایجاد نمی کند. بنابراین در بسیاری از موارد، ایجاد FCMs (طرح شناخت فازی) برای سیستم های علت و معلول یچیده بستگی به دانش متخصصان دارد. مدل های ایجاد شده فیزیکی، دارای کمبودهایی مهمی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی قابل اطمینان دارند. در این مقاله به طرح شبکه عصبی فازی برای بالا بردن توان یادگیری FCMs (طرح شناخت فازی) پرداخته به گونه ای که تعیین خودکار توابع عضویت و تعیین علت و معلول آن با مکانیسم استنتاج FCMs (طرح شناخت فازی) رایج ادغام می گردد. به این ترتیب، مدل FCMs (طرح شناخت فازی) سیستم های مورد بررسی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از یافته های متخصصان می باشند. علاوه بر این، لز زیرمجموعه های متقابل برای تعریف و شرح علت و معلول در FCMs (طرح شناخت فازی) استفاده می کنیم. این موارد تفاسیر مشخصی را در ارتباط با دلایل FCMs (طرح شناخت فازی) ایجاد کرده و به این ترتیب درک فرایند استنتاج را اسان تر می کند. برای تایید عملکرد، روش پیشنهادی در سری زمانی پر هرج و مرج پیش بینی شده، تست می گردد. بررسی های شبیه سازی شده کارایی روش پیشنهادی را نشان می دهد.
مقدمه
از زمان تحقیقات کوشو، طرح شناختی فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به عنوان یک روش بررسی مدل ها، برای سیستم های پیچیده، مدل FCMs به بررسی سیستم های دیگر به عنوان مجموعه ای از مفاهیم و روابط بین این مفاهیم که منشاء آن از ترکیب منطق فازی و شبکه های عصبی می باشد پرداخته است. ذاتا، FCMs به عنوان یک نمودار مستقیم همراه با بازخوردهایی می باشد که شامل مجموعه ای از گره ها و منحنی هایی می باشد که این گره ها را به هم مرتبط می کند. شکل 1 نمایش گرافیکی FCM و ساختار شبکه ای آن را نشان می دهد.
در FCMs گره نشان دهنده مفهوم معنایی می باشد که از سیستم مورد نظر مشتق می شود.
چکیده
بسیاری از مسائل علمی، مهندسی و اقتصادی شامل بهینه سازی مجموعه ای از پارامترها می باشد. این مسائل شامل نمونه هایی همچون به حداقل رسانی اتلاف در شبکه برق با یافتن تنظیمات بهینه بخش ها، یا تقویت شبکه عصبی برای تشخیص تصویر چهره افراد می باشد. الگوهای بهینه سازی بیشماری مطرح شده اند تا به حل این مشکلات، با درجلت مختلفی از موفقیت بپردازند. بهینه سازی ازدحام ذرات (PSO) تکنیک نسبتا جدیدی می باشد که به صورت تجربی نشان داده شده است که دارای عملکرد خوبی بر روی بسیاری از این مسائل بهینه سازی می باشد. این مقاله مدل نظری را ارائه می دهد که می تواند برای شرح رفتار بلندمدت الگوریتم مورد استفاده قرار گیرد. نسخه پیشرفته بهینه کننده ازدحام ذرات ایجاد شده و نشان داده شده که دارای همگرایی تضمین شده ای بر روی سطح محلی می باشد.این الگوریتم رو به توسعه بوده، که منجر به الگوریتم هایی با همگرایی تضمین شده در سطح جهانی شده است. مدلی برای ایجاد الگوریتم های PSO مشترک ایجاد شده است، که منتهی به معرفی دو الگوریتم مبتنی بر PSO جدید شده است. شواهد تجربی نیز ارائه شده تا به پشتیبانی از خصوصیات نظری پیش بینی شده توسط مدل های مختلف، با استفاده از فعالیت های مبنا ترکیبی برای بررسی مشخصه های ویژه بپردازد. سپس الگوریتم های مختلف مبتنی بر PSO، در مورد فعالیت تقویت شبکه های عصبی اعمال می گردد که به ادغام نتایج حاصل شده بر روی فعالیت های مبنا ترکیبی بپردازد.
مقدمه
شما با صدای ساعتتان بیدار می شوید. ساعتی که توسط شرکتی ساخته می شود تا سود خود را با مد نظر قرار دادن تخصیص بهینه منابع تحت کنترلش به حداکثربرساند. شما کتری را روشن می کنید تا قهوه ای درست کنید، بدون اینکه در مورد مدت زمان طولانی که شرکت برق برای بهینه سازی ارائه برق وسایل تان صرف می کند، فکر کنید. هزاران متغیر در شبکه برق تلاشی را به منظور به حداقل رسانی اتلاف در شبکه به منظور به حداکثر رساندن بازدهی تجهیزات برقی تان انجام می دهد. شما وارد اتومبیلتان شده وموتور را بدون درک پیچیدگی های این معجزه کوچک مهندسی شده، روشن می کنید. هزاران پارامتر توسط سازندگان مد نظر قرار داده می شود تا وسیله نقلیه ای را تحویل دهند که متناسب با انتظارتان بوده، که شامل زیبایی بدنه تا شکل آینه بغل اتومبیل می باشد تا از تصادف جلوگیری شود.