پایان نامه دوره کارشناسی کامپیوتر : گرایش نرم افزار
چکیده
فصل اول: مقدمه ای بر داده کاوی
1-1-مقدمه
1-2-عامل مسبب پیدایش داده کاوی
1-3-داده کاوی و مفهوم اکتشاف دانش (KDD)
1-3-1-تعریف داده کاوی
1-3-2- فرآیند داده کاوی
1-3-3-قابلیت های داده کاوی
1-3-4-چه نوع داده هایی مورد کاوش قرار می گیرند؟
1-4- وظایف داده کاوی
1-1-4-کلاس بندی
1-4-2- مراحل یک الگوریتم کلاس بندی
1-4-3-انواع روش های کلاس بندی
1-4-3-1- درخت تصمیم 1-4-3-1-1- کشف تقسیمات
1-4-3-1-2- دسته بندی با درخت تصمیم
1-4-3-1-3-انواع درخت های تصمیم
1-4-3-1-4- نحوۀ هرس کردن درخت
1-4-3-2- نزدیکترین همسایگی K
1-4-3-3-بیزی 1-4-3-3-1 تئوری بیز
1-4-3-3-2 -دسته بندی ساده بیزی
1-4-3-4- الگوریتم های ژنتیک در فصل دو با آن آشنا می شویم
1-4-3-5-شبکه های عصبی
1-4-4- ارزیابی روش های کلاس بندی
-2-4-1پیش بینی
1-4-3-انواع روش های پیش بینی
1-4-3-1- رگرسیون
1-4-3-1 -1- رگرسیون خطی
1-4-3-1-2-رگرسیون منطقی
1-4-3- خوشه بندی
1-4-3-1- تعریف فرآیند خوشه بندی
1-4-3-2-کیفیت خوشه بندی
1-4-3-3-روش ها و الگوریتم های خوشه بندی
1-4-3-3-1-روش های سلسله مراتبی
1-4-3-3-1-1- الگوریتم های سلسله مراتبی
1-4-3-3-1-1-1-الگوریتم خوشه بندی single-linkage
1-4-3-3-2-الگوریتم های تفکیک
1-4-3-3-3-روش های متکی برچگالی
1-4-3-3-4-روش های متکی بر گرید
1-4-3-3-5-روش های متکی بر مدل
1-4-4- تخمین
1-4-4-1- درخت تصمیم
1-4-4-2- شبکه عصبی
1-4-5-سری های زمانی
1-5-کاربردهای داده کاوی
1-6-قوانین انجمنی
1-6-1-کاوش قوانین انجمنی
1-6-2-اصول کاوش قوانین انجمنی
1-6-3-اصول استقرا در کاوش قوانین انجمنی
1-6-4-الگوریتم Apriori
1-7-متن کاوی
1-7-1- مقدمه
1-7-2- فرآیند متن کاوی
1-7-3- کاربردهای متن کاوی
1-7-3-1- جستجو و بازیابی
1-7-3-2-گروه بندی و طبقه بندی داده
1-7-3-3-خلاصه سازی
1-7-3-4- روابط میان مفاهیم
1-7-3-5- یافتن و تحلیل ترند ها
1-7-3-5- برچسب زدن نحوی (POS)
1-6-2-7-ایجاد تزاروس و آنتولوژی به صورت اتوماتیک
1-8-تصویر کاوی
1-9- وب کاوی
فصل دوم: الگوریتم ژنتیک
1-2-مقدمه
2-2-اصول الگوریتم ژنتیک
2-2-1-کد گذاری
2-2-1-1-روش های کد گذاری
2-2-1-1-1-کدگذاری دودویی
2-2-1-1-2-کدگذاری مقادیر
2-2-1-1-3-کدگذاری درختی
2-2-2- ارزیابی
2-2-3-انتخاب
2-2-3-1-انتخاب گردونه دوار
2-2-3-2-انتخاب رتبه ای
2-2-3-3-انتخاب حالت استوار
2-2-3-4-نخبه گزینی
2-2-4-عملگرهای تغییر
2-2-4-1-عملگر Crossover
2-2-4-2-عملگر جهش ژنتیکی
2-2-4-3-احتمالCrossover و جهش
2-2-5-کدبرداری
2-2-6-دیگر پارامترها
2-4-مزایای الگوریتم های ژنتیک
2-5- محدودیت های الگوریتم های ژنتیک
2-6-چند نمونه از کاربرد های الگوریتم های ژنتیک
2-6-1-یک مثال ساده
فصل سوم: شبکه های عصبی
3-1-چرا از شبکه های عصبی استفاده می کنیم؟
3-2-سلول عصبی
3-3-نحوه عملکرد مغز
3-4-مدل ریاضی نرون
3-5-آموزش شبکه های عصبی
3-6-کاربرد های شبکه های عصبی
فصل چهارم: محاسبات نرم
4-1-مقدمه
4-2-محاسبات نرمچیست؟
4-2-1-رابطه
4-2-2-مجموعه های فازی
4-2-2-1-توابع عضویت
4-2-2-2- عملیات اصلی
4-2-3-نقش مجموعه های فازی در داده کاوی
4-2-3-1- خوشه بندی
4-2-3-2- خلاصه سازی دادهها
4-2-3-3- تصویر کاوی
4-2-4- الگوریتم ژنتیک
4-2-5-نقش الگوریتم ژنتیک در داده کاوی
4-2-5-1- رگرسیون
4-2-5-2-قوانین انجمنی
4-3-بحث و نتیجه گیری
فصل پنجم: ابزارهای داده کاوی
5-1- نحوه انتخاب ابزارداده کاوی
5-2-1-ابزار SPSS-Clemantine
5-2-3-ابزار KXEN
5-2-4-مدل Insightful
5-2-5-مدل Affinium
5-3- چگونه می توان بهترین ابزار را انتخاب کرد؟
5-4-ابزار های داده کاوی که در 2007 استفاده شده است
5-5-داده کاوی با sqlserver 2005
5-5-1-اتصال به سرورازمنوی
5-5-2- ایجاد Data source
5-5-3- ایجاد Data source view
5-5-4- ایجاد Mining structures
5-5-5- Microsoft association rule
5-5-6- Algorithm cluster
5-5-7- Neural network
5-5-8-Modle naive-bayes
5-5-9-Microsoft Tree Viewer
5-5-10-Microsoft-Loistic-Regression
5-5-11-Microsoft-Linear-Regression
فصل ششم: نتایج داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
•1-6-نتایج Data Mining With Sql Server 2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
1-6-1-Microsoft association rule
1-6-2- Algorithm cluster
1-6-3- Neural network
1-6-4- Modle naive-bayes
1-6-5-Microsoft Tree Viewer
7-1-نتیجه گیری
منابع و ماخذ
خلاصه
منطق فازی، یک شبکه عصبی و سیستم خبره است که برای ایجاد یک سیستم تشخیصی ترکیبی با یکدیگر ترکیب شده اند. با استفاده از چنین سیستمی ما یک روش جدید برای فراگیری مبانی دانش استفاده می کنیم. سیستم ما شامل یک سیستم خبره فازی همراه با یک بیس دانشی با منبع دوگانه است. دو سری قوانین لازم هستند، که به صورت استنباطی از مثالهای ارائه شده و به صورت استقرایی توسط فیزیک دانان بدست آمده اند. یک شبکه عصبی فازی سعی میکند که از داده های نمونه یاد گرفته و این اجازه را می دهد که قوانین فازی برای دانش پایه را استخراج کنیم. تشخیص electroencephalograms با تفسیر عناصر نموداری بعنوان یک نوع مشاهده در روش ما بکار گرفته می شود. نتایج اولیه نشان دهنده احتمالات مورد نظر با استفاده از روش ما می باشد.
مقدمه
روشهای تکراری شناسایی و ارزیابی پدیده خاص را کار تشخیصی می نامند، که یکی از کاربردهای اصلی برای هوش مصنوعی (AI) می باشد. با توجه به اینکه رنج وسیعی از چنین کاربرهای تشخیصی وجود دارد. اگرچه رنج وسیعی از چنین کاربردهای تشخیصی در پزشکی وجود دارد ولی این بخش مورد توجه استفاده کنندگام از هوش مصنوعی قرار دارد. عمومی ترین روشهای AI در بخش پزشکی مبتنی بر دانش و مدلسازی رفتار تشخیصی متخصصان است. انواع مختلفی از چنین سیستمهای خبره ای از زمانی که SHRTLIFFE روش SHRTLIFFE MYCIN را بعنوان یک سیستم خبره برای تشخیص آسیبهای خونی انسان طراحی و معرفی کرد، بوسیله پزشکان مورد استفاده قرار گرفته است. یکی از بزرگترین مشکلات بر سر راه طراحی یک سیستم خبره مناسب، گردآوری و دانش پایه آن است. ما روش جدیدی را معرفی میکنیم که در آن دانش پایه با منبع دوگانه بوسیله یادگیری قیاسی واستقرایی ایجاد می شود. شیکه های عصبی نیز از این راه برای تشخیص استفاده میکنند. آنها قادرند رابطه بین مجموعه داده ها را با داشتن اطلاعات نمونه که نشاندهنده لایه های ورودی و خروجی آنها است، یاد بگیرند.
دسته: برق
حجم فایل: 377 کیلوبایت
تعداد صفحه: 13
طراحی پایدار کننده سیستم های قدرت مقاوم با استفاده از ترکیب ANN و ICA
چکیده
حد پایداری حالت پایدار و میرایی مثبت سیستم را می توان با پایدار کننده سیستم قدرت متداول بهبود یافت (PSS). با این حال، به منظور توانایی های مانند تنظیم کردن آنلاین و زمان واقعی بهینه میرایی در کل محدوده عملیاتی، طراحی مقاوم از PSS مورد نیاز است. یک طراحی PSS مقاوم جدید با استفاده از شبکه عصبی مصنوعی (ANN) و الگوریتم رقابتی امپریالیستی (ICA) برای میرایی نوسانات حالت های الکترومکانیکی و بهبود پایداری سیستم قدرت در این مقاله ارائه شده است. دینامیک در ارتباط با یک تک ماشین متصل شده به باس بی نهایت سیستم قدرت در این مطالعه تجزیه و تحلیل شده است. تنظیمات بهینه پارامترهای PSS با استفاده از ترکیب ICA-ANN به دست آمده اند.. ANN برای تنظیم پارامترهای PSS آنلاین استفاده شده است. نتایج PSS مبتنی بر ICA (ICA-PSS) به عنوان طرح های آموزش ANN استفاده شده اند. تجزیه و تحلیل مقادیر ویژه و شبیه سازی های سیستم اثر روش ارائه شده در میرایی نوسانات الکترومیکانیکی و بهبود پایداری دینامیکی سیستم را نشان می دهد.
واژه های کلیدی: شرایط قدرت پایدار کننده سیستم، الگوریتم رقابتی امپریالیستی، شبکه عصبی مصنوعی، نوسانات فرکانس پایین
مقاله سال 2013
قیمت: 16,000 تومان
خلاصه
انرژی بدست آمده از منابع تجدید پذیر این روزها بسیار مهم شده اند، و این اساسا بدلیل سهم ناچیزشان در تولید گازهای گلخانه ای است. مساله ای که مطرح می شود این است که چطور می توان این منابع جدید را به شبکه های سنتی برق اضافه کرد، بطوری که بازده و قابلیت اطمینان این سیستم های تولید توزیع شده (DG) بیشینه شود. سخت افزار مورد نیاز برای این کار بطور کلی یک اینورتر منبع ولتاژی (VSI) است که یک بار معمولی مانند کاربردهای تک-فاز مسکونی و تجاری را تامین کند. همچنین، فرآیند بهینه سازی نیازمند تجزیه تحلیل های معمولی توان می باشد. این مقاله توسعه و ارزیابی های آزمایشی یک سیستم کنترل توان برای یک VSI متصل به شبکه تک-فاز، شامل تحلیل توان را، با استفاده از یک پردازشگر برای پیاده سازی کنترل یک مدار 'آرایه کیت قابل برنامه ریزی میدان' (FPGA) ارایه می دهد. ساختار جدید سخت افزار شبکه عصبی خطی تطبیقی (ADALINE) ، پیاده سازی الگوریتم های سیستم قدرت را ممکن ساخته، و همچنین اجازه تحلیل زمان-واقعی هارمونیک های مرتبه-بالا را بدون افزایش دادن ناحیه پیاده سازی مدار FPGA، خواهد داد. این ویژگی ها برای واسط های الکترونیک قدرتی DG جدید ایده آل می باشد، که می توان از آن نه تنها برای فرستادن توان اکتیو، بلکه برای جبران سازی هارمونیک ها و توان راکتیو نیز، استفاده کرد. شبیه سازی و نتایج تجربی طرح های پیشنهادی با فرکانس های ثابت و متغیر نیز، پیوست شده اند تا اعتبار آنها مورد تاکید قرار گیرد.
اصطلاحات مربوط: شبکه عصبی مصنوعی (ANN) ، تولید توان توزیع شده، تجزیه و تحلیل توان، آرایه های منطقی قابل برنامه ریزی، اندازه گیری توان، اعوجاج هارمونیکی کل.
مقدمه
این روزها، بهره برداری عظیم از منابع انرژی توزیع شده (DER) مبنی بر منابع تجدید پذیر، برای کاهش مسایل مربوط به انتشار گاز گلخانه ای و نیز برای افزایش قابلیت اطمینان و توانایی سیستم های قدرت واقعی و آینده، بسیار مهم شده است. آنگاه، بهره برداری عظیم از DER توسط دولت ها و صنعت، در سراسر دنیا ارتقا یافته است.
توسعۀ سیستم های با انرژی تجدیدپذیر و فن آوری های شبکه هوشمند، برای ایجاد امکان برای متصل کردن DER به سیستم های قدرت متمرکز شده سنتی، بایسته می باشد. این پیشرفت های فنی، نفوذ بالای تولید توزیع شده (DG) را موجب می شود.